Interferometric measurements of *warm* HDO/H₂O

Magnus Persson, Jes Jørgensen, Ewine van Dishoeck

Observations

- $H_2^{18}O 3_{13}-2_{20} 203 \text{ GHz line } E_u=204 \text{ K}$
 - PdBI: N1333 I4A, I4B, I2A
 - **SMA: IRAS 16293-2422**
- $H_2^{18}O$ 5₃₂-4₄1 692 GHz line $E_u = 727$ K
 - ALMA: IRAS 16293-2422
- HDO 3₁₂-2₂₁ 225 GHz line E_u=168 K
 - PdBI: N1333 I2A, I4A, I4B: 225 GHz; I2A: 241 GHz
 - SMA: N1333 I4A, I4B, I2A, IRAS16293-2422

HDO level diagram

Analysis

- Simple calculation of number of molecules in beam
 - Assumes lines are optically thin
 - Assumes LTE at single excitation temperature
 - Results not sensitive to T_{ex} in range 70-300 K
 - Einstein A coefficients much smaller than at 1 THz => less optically thick
 - Dust continuum not optically thick

Advantage: model independent HDO/H₂O ratio

Hot water in a disk in the deeply embedded phase

HDO/H₂O<6x10⁻⁴ in hot gas from interferometer data: Jorgensen & vD 2010b.

H₂¹⁸O NGC 1333 detections

Persson et al. 2012

Hot water abundance w.r.t. *total* compact (warm + cold) H₂

This is *not* the hot core water abundance

Total column from dust continuum; Only a few% of gas >100 K

Persson et al. 2012

HDO/H₂O IRAS16293 A

ALMA 692 GHz

 $T_{ex} = 124 \text{ K}$

IRAS 16293 -2422 CSV data

SMA 203 GHz

Persson et al. 2012b

Warm HDO/H₂O=9.2±2.6×10⁻⁴ vs. 3.4×10⁻² Coutens et al. 2012

Conclusion

- All warm HDO/H₂O ratios ~0.001 within factor of 2
- Persson et al. 2013 summary in prep.