HDO project

Fang-Chun Liu Bérengère Parise

Outline

The Projects:

- # High-Mass Hot Core: G327.3-0.6 & IRAS 16065-5158
- Intermediate Source: L1641 S3 MMS1
- * Low-Mass Protostar: NGC1333 - IRAS 2A

High-mass hot core: G327.3-0.6

G327.3-0.6 -HDO Data

- * Three emission lines are detected.
- * The ground-state transition line (893 GHz) observed with different telescopes show the line profile is true.

G327.3-0.6 -RATRAN Preliminary Results- Rolffs' model (Rolffs et al. 2011)

G327.3-0.6 -lines Comparison

OU

H₂¹⁸O and H₂O lines are broader than HDO line.

H₂O line has different velocity distribution.
 => different position!

H₂O ARE NOT TOWARD HOT CORE!

G327.3-0.6 -Rolffs' Model v.s. Luis' Model

- We then adopted the physical of profiles from Luis.
- Different constraints and parameters:
 - Rolffs: LABOCA map
 ρ=r^{-1.66}; T:centrally heated cloud with cooling and heating; kappa=jena,bare.e5
 - Luis: 850 μm map & SED
 ρ=r^{-1.2}; kappa=jena,thin.e5.

G327.3-0.6

-RATRAN Preliminary Results-luis' model

High-mass hot core: IRAS 16065-5158

Three emission lines are detected.

The HDO line @893 GHz is not detected, even with Herschel telescope.

IRAS 16065-5158 -RATRAN Preliminary Results

IRAS 16065-5158 -RATRAN Preliminary Results

- * Observed Continuum
 @ 893 GHz is ~0.67/2=0.335 K
- Modeled Continuum@893 GHz is ~1.66 K

* Need to modify the physical profiles.

Intermediate-mass source: L1641 S3MMS1

L1641 S3MMS1 -HDO Data

L1641 S3MMS1 -RADMC3D Preliminary Results

L1641 S3MMS1 -RATRAN Preliminary Results

The HDO fractional abundance in the inner region is around 1e-7. We need to add one more thin layer to reproduce the absorption.

Low-mass source: NGC1333 IRAS2A

NGC1333 IRAS2A -RATRAN Preliminary Results

- The fractional abundance in the inner region is needed to be decreased.
- The absorption line is much narrower (~0.58 km/s) than other lines (~4 km/s).

NGC1333 IRAS2A -RATRAN Preliminary Results

• To reproduce this narrow absorption, we need to reproduce the continuum first.

Thank you very much for your attention!

- In the case of G327.3, we need to solve the opacity problem. The very similar profiles of different lines can tell us the kinematic structures.
- In the case of IRAS 16065-5158 and IRAS 2A, we probably can well fit the spectra if we can reproduce real continuum emission at 893 GHz.
- In the case of L1641 S3 MMS1, we need to add one photo-disorption layer to reproduce the thin absorption at 893 GHz like the case in IRAS 16293-2422.