Ice deuteration: Models and observations to interpret the protostar history

V. Taquet, C. Ceccarelli, C. Kahane, A. López-Sepulcre Institut de Planétologie et d'Astrophysique de Grenoble P. Peters, D. Duflot, C. Toubin Laboratoire de Physique des Lasers et des Matériaux, Lille R. Neri Institut de Radiastronomie Millimétrique, Grenoble HDO 2013 workshop

The GRAINOBLE model

Time-dependent gas-grain astrochemical model based on the rate equations (Hasegawa et al. 1992)

- gas phase processes
- gas-grain processes -> accretion and (thermal+non-thermal) desorption
- bimolecular and exothermic surface reactions

→ Following surface experiments which show that cold ices are mostly inert (see Watanabe et al. 2003, 2004), Multilayer approach that:

- distinguishes the processes between surface/ bulk
- traps particles in the bulk
- saves the composition of each layer
- → accurate for ice photolysis

Taquet, Ceccarelli, Kahane 2012a, A&A, 538, A42

The chemical network

Gas phase chemical network:

- complex network coming from the KIDA database for 7 elements
- deuterium chemistry (following Roberts et al. 2000, 2003, 2004)
- ortho and para spin states of H₂ and key ions (following Hugo et al. 2009)

Surface chemical network based on recent experimental works:
deuterated water network from i) O (Dulieu+ 2010, Oba+ 2012),
ii) O₂ (Miyauchi+ 2008, Ioppolo+ 2010), iii) O₃ (Mokrane+ 2009)
deuterated formaldehyde and methanol network
(Watanabe+ 2002, Nagaoka+ 2005, Hidaka+ 2009, Fuchs+ 2009)
carbon dioxide network (Oba+ 2010, Ioppolo+ 2011, Raut+ 2011)
wavelength-dependent UV photolysis on ices based on experimental works (Fayolle+ 2011) or MD simulations (Andersson+ 2008)

Multiparameter approach

Several input parameters show a large range of values:

- **Physical conditions** vary with time/ object
- Grain surface parameters follow distributions depending on grain/ice
- Uncertain key chemical parameters

Input parameters	Values
Physical conditions	
n_H	$10^3 - 5 \times 10^6 \text{ cm}^{-3}$
$T_g = T_d$	8 - 20 K
A_v	0 - 10 mag
Grain surface parameters	
a_d	0.1 - $0.4~\mu{ m m}$
F_{por}	0 - 0.9
$E_b(\mathbf{H})$	400 - 600 K
E_d/E_b	0.5 - 0.8
d_s	1.4 - 7 Å
Chemical parameters	
$E_a(CO)$	400 - 2500 K
X(O)	$10^{-8} - 10^{-4}$
$H_2 o/p ratio$	$3 imes 10^{-6}$ - 3

→ Model grid by varying the input parameter values: study the influence of each parameter on the ice chemistry

IPAG Institut de Planétologie et d'AstroPhysique de Granotie

2 - Predictions 3 - Observations 4 - Conclusions Chemical differentiation within ices

Ices are very heterogeneous and their chemical composition depends on the physical conditions

Translucent cloud region $n_{H} = 10^{4} \text{ cm}^{-3}$ T = 15 K $A_{v} = 2 \text{ mag} (\rightarrow A_{v,obs} = 4 \text{ mag})$

Water-rich ice (+ CO₂) → consistent with Avdependent ice observations (see Whittet et al. 2001, 2007)

Taquet, Peters, Kahane, Ceccarelli et al. 2013, A&A, in press

IPAG Institut de Penétologie et a Astrophysique de Grenche A STRO

2 - Predictions 3 - Observations 4 - Conclusions Chemical differentiation within ices

Ices are very heterogeneous and their chemical composition depends on the physical conditions

Dense core region $n_{H} = 10^{5} \text{ cm}^{-3}$ T = 10 K $A_{v} = 10 \text{ mag} (A_{v,obs} = 20 \text{ mag})$

CO-rich ice (+ H₂O₂, H₂CO, CH₃OH) → consistent with Avdependent ice observations (see Whittet et al. 2007, 2011; Boogert et al. 2011)

Taquet, Peters, Kahane, Ceccarelli et al. 2013, A&A, in press

2 - Predictions

3 - Observations

4 - Conclusions

H₂

CO depletion and ice deuteration

Deuteration reactions in competition with reactions involving CO

 $HD_{2}^{+} H_{2}D^{+} \longrightarrow HD_{2}^{+}, D_{3}^{+}, D, \dots$

→ CO depletion increases the deuteration (see Roberts et al. 2003)

Icy molecules (H_2O, H_2CO, CH_3OH) form via addition **reactions with H, D atoms**

Their deuteration depend on:
 the increase of the gaseous atomic [D]/[H]
 when they are formed

 2 - Predictions
 3 - Observations
 4 - Conclusions

 H2
 Ortho/para ratio and
 ice deuteration

Ortho spin state of H₂ has a higher internal energy, allowing endothermic reactions to occur at low temperatures
 → deuteration in the gas phase decreases with the opr(H₂)

Water deuteration for 4 opr(H₂) values and varying 6 other parameters

The opr(H₂) decreases the water deuteration by several orders of magnitude

→ stronger decrease than the standard deviations induced by all other parameters

Taquet, Peters, Kahane, Ceccarelli et al. 2013, A&A, in press.

1 - Model

2 - Predictions

3 - Observations

4 - Conclusions

Ice formation in IRAS 16293

Water deuteration is reproduced for: - a low H₂ o/p (< 3 10^{-4}) - a large range of n_H (8 $10^3 < n_H < 3 10^5 \text{ cm}^{-3}$) - temperatures between 10 and 20 K

Formaldehyde and methanol deuteration are reproduced for:

- higher densities (> 5 10⁵ cm⁻³)
- lower temperatures (≈ 10 K)

→ water forms first in low-density regions while formaldehyde and methanol are mainly formed in cold dark cores solid: 10 K, dashed: 20 K Taquet, Peters, Kahane, Ceccarelli et al. 2013, A&A, in press. 1 - Model

2 - Predictions3 - Observations4 - ConclusionsWater deuteration inIow-mass protostars

Gas phase processes are not efficient enough to alter the deuteration after the ice evaporation seen in Class 0 protostars (Charnley+ 1997, André+ 2000, Osamura+ 2004)

→ The deuteration observed in Class 0 protostars reflects the formation in ices

HDO/H₂O abundance ratio in Class 0 protostars: tracer of the water formation in the precursor cold phase

However, HDO/H₂O constrained only in a few low-mass protostars
 → Only IRAS 16293 shows a value of the ratio; for other protostars lower/upper limits

1 - Model

HDO in NGC 1333 IRAS 2A and 4A

→ PdBI observations of the HDO 4_{2,2}-4_{2,3} transition (at 143 GHz) toward 2 low-mass protostars: NGC1333-IRAS2A and -IRAS4A
 → High angular resolution (2"): estimation of the emission coming from the warm quiescent envelope

2 - Predictions

3 - Observations

4 - Conclusions

HDO in NGC 1333 IRAS 2A and 4A

Comparison of our observations with PdBI **H**₂¹⁸**O observations** by Persson et al. (2012):

➔ Most of the HDO and H₂¹⁸O emissions originate from the same quiescent envelope

2 - Predictions

3 - Observations

4 - Conclusions

HDO in NGC 1333 IRAS 2A and 4A

LVG analysis of these emissions combined with single-dish observations of IRAS2A (Liu et al. 2011): Model: 20 K Model: 10 K L1157-B1 IRAS 16293 IRAS2A IRAS4A IRAS4B

 $6 \times 10^{5} < n_{H} < 10^{8} \text{ cm}^{-3}$ $T_{kin} = 75-80 \text{ K}$ $\theta = 0.4 \text{ "}$ $\Rightarrow 5 \times 10^{17} < \text{N(HDO)} < 10^{19} \text{ cm}^{-2}$

Depending on the physical case, - $HDO/H_2O = 0.3 - 8\%$ in IRAS2A - $HDO/H_2O = 0.5 - 3\%$ in IRAS4A

Conclusions & Perspectives

- ✓ The multilayer approach shows that ices are heterogeneous
 → in good agreement with A_v-dependent ice observations
- The deuteration of water is explained by recent chemical networks
- ✓ The deuteration is very sensitive to the physical conditions
 → trace the physical and chemical history of observed protostars
- Study of the multilayer formation and deuteration of ices with evolving physical conditions
- Use the deuteration to probe the formation pathways of Complex Organic Molecules

Thank you

Spitzer image of the NGC1333 star-forming region

5 - Conclusions

2 - Model 3 - Predictions 4 - Observations Interstellar grains and chemical complexity

Molecular clouds: - simple molecules - first ices (H₂O, CO₂)

Prestellar cores: - CO freeze-out - other organic ices

Protostellar envelopes: COMs formation - ice sublimation

2 - Model

3 - Predictions

ctions 4 - Observations

5 - Conclusions

Deuteration in prestellar cores

Deuterium fractionation: Abundance ratio between an hydrogenatedspecies and its deuterated isotopologue including D atom(s)Ex: water \rightarrow HDO/H₂O or D₂O/H₂OHigh deuteration is observed for various species in prestellar cores:Molecular cloudsPrestellar cores

Cosmic D/H reservoir: 10⁻⁵ (Linsky 2003)

see Ceccarelli et al. (2007); Bacmann et al. (2007)

2 - Model

3 - Predictions

4 - Observations

5 - Conclusions

Deuteration in Class 0 protostars

Very high molecular deuteration is observed in Class 0 protostars:

Why do the grain surface molecules show different fractionations?

Gas phase processes are not efficient enough to alter the deuteration after the ice evaporation seen in Class 0 protostars (Charnley+ 1997, André+ 2000, Osamura+ 2004)

→ The deuteration observed in Class 0 protostars **reflects** the formation in ices

2 - Model

3 - Predictions

4 - Observations 5 -

5 - Conclusions

Deuterium chemistry

The deuteration reactions are in competition with reactions involving $CO \rightarrow$ its depletion increases their reactivity

Model predictions computed by Roberts et al. (2004) with a gas phase model for $n_{\rm H} = 2 \ 10^6 \ {\rm cm}^{-3}$, T = 10 K

Chemical network based on recent experimental studies:

- Hydrogenation of CO (Watanabe+ 2002, 2004, 2006, Fuchs+ 2009)

- H₂CO deuteration via addition/abstraction reactions (Hidaka+ 2009)

- CH₃OH deuteration via addition/abstraction reactions (Nagaoka+ 2005, 2007)

Chemical network proposed by Watanabe & Kouchi (2008), Hidaka et al. (2009)

IPAG

1 - Introduction **3** - Predictions 4 - Observations 5 - Conclusions 2 - Model Formation and deuteration of water ice

Chemical network based on recent experimental works:

 Hydrogenation of atomic O (Dulieu+ 2010, Jing+ 2011, Oba+ 2012)

- Hydrogenation of O_2 , O_3 (Miyauchi+ 2008, Ioppolo+ 2008, Mokrane+ 2009, Cuppen+ 2010, Romanzin+ 2011)

- Deuteration of O_2 (Miyauchi+ 2008, Matar+ 2008, Oba+ 2012)

2 - Model

3 - Predictions

4 - Observations 5

5 - Conclusions

Reaction probabilities

Some key reactions show activation energy barriers

- In **previous models**, reaction probability computed assuming a **rectangular energy barrier** with a **width arbitrary fixed** to 1 A

$$\Rightarrow P_r = \exp\left(-\frac{2a}{\hbar}\sqrt{2\mu E_a}\right)$$

- The Eckart model is introduced for all the reactions, from quantum gas phase calculations → fit an approximate PES → compute an accurate reaction probability ex: $H_2O_2 + H \rightarrow H_2O + OH$ $P_{r,square} = 1.2 \ 10^{-8}; P_{r,Eckart} = 1.4 \ 10^{-7}$

Taquet, Peters, Kahane, Ceccarelli et al. 2012c, A&A, in press.

4 - Observations 5 - Conclusions 2 - Mode Predictions

formaldehyde/methanol deuterations

Abstraction reactions \rightarrow needed to reproduce the high observed H₂CO and CH₃OH deuterations

Addition reactions only

Low-mass protostars usually form in cold dark clouds, also called molecular clouds

Densities n_H : $10^3 - 10^4$ cm⁻³ Temperature T: 10 - 30 K

Taurus Molecular Cloud seen in ¹³CO J=1-0 emission (Goldsmith et al. 2008)

Interstellar grains and chemical complexity

Infrared, sub-millimetric, and millimetric observations have revealed a chemical evolution with the evolutionary stage of stars

→ In spite of their tiny sizes (< 0.5 μ m), and their low abundances (1% in mass, < 10⁻¹² in abundances), interstellar grains play a crucial role in this chemical evolution

Cold dark cores form via the progressive accumulation of matter:

1.2 mm continuum map of L1517B (Tafalla et al. 2004)

Density, temperature and A_v structure computed by Galli et al. (2002)

A protostar borns at the center and starts to warm-up its envelope

Gravitational collapse

and protostar birth

1.3 mm continuum map of IRAS 16293 (Bottinelli et al. 2004) Density and temperature structures derived by Crimier et al. (2010)

Temperature (K)

1 ()

2 - Model

3 - Predictions

4 - Observations 5

5 - Conclusions

Deuteration: why bothering ?

5 - Conclusions

Deuteration: why bothering ?

Molecular deuteration refers to the abundance ratio between a hydrogenated species and its deuterated isotopologue, including one (or several) deuterium atoms ex: water \rightarrow HDO/H₂O

Deuteration can probe the physical conditions at the moment of formation of specific molecules and their eventual reprocessing
 → Investigate the origin of the molecular content in the Solar System by comparing the deuteration in the ISM and Solar System bodies (comets/ meteorites)

→ Evaluate the contribution of comets for transferring water in Earth's oceans by comparing the water deuteration on the Earth and in comets

Porous versus non-porous grain

Pores trap volatile species (H atoms) increasing their abundances
 → slightly increase the formation of main hydrogenated species

Absolute abundances for a reference model ($n_H = 10^5 \text{ cm}^{-3}$, T = 15 K) and a small network. Solid: smooth grain, dotted: porous grain.

Taquet, Ceccarelli, Kahane 2012 A&A, 538, A42

Abundance distributions

Thanks to the fast computation, large grids of models are run
→ allow us to study the impact of each parameter on ice chemistry

ex: Abundance distributions for the old "bulk" (blue) and the new "multilayer" (red) approaches

→ Range of 8 parameters is varied ≈ 18000 runs

→ H_2O , H_2CO , CH_3OH abundances are lower with the multilayer approach but radicals can survive

H₂ Ortho/para ratio and ice deuteration

Ortho spin state of H₂ has a higher internal energy, allowing endothermic reactions to occur at low temperatures
 → deuteration in the gas phase decreases with the opr(H₂)

Water deuteration for 4 opr(H2) values and varying 6 other parameters .

The opr(H₂) decreases the water deuteration by several orders of magnitude

→ stronger impact than the standard deviations induced by all other parameters

Taquet, Peters, Kahane, Ceccarelli et al. A&A, submitted

2 - Model

3 - Predictions

4 - Observations

5 - Conclusions

Reaction probabilities

Some key reactions show activation energy barriers

- In **previous models**, reaction probability computed assuming a **rectangular barrier** with a **width arbitrary fixed** to 1 A

The Eckart model is introduced
→ fit an approximate PES
→ accurate reaction probability

ex: $H_2O_2 + H \rightarrow H_2O + OH$ $P_{r,square} = 1.2 \ 10^{-8}$ $P_{r,Eckart} = 1.4 \ 10^{-7}$

Taquet, Peters, Kahane, Ceccarelli et al. 2012c, A&A, submitted