Goal: follow HDO/H₂O from cores to disks to planets

Visser et al. 2009 Herbst & vD 2009

Early work on HDO/H₂O: high mass YSOs

Astron. Astrophys. 228, 447-470 (1990) +1988

Deuterated water and ammonia in hot cores

T. Jacq^{1,2}, C.M. Walmsley¹, C. Henkel¹, A. Baudry², R. Mauersberger^{1,3}, and P.R. Jewell⁴

Warm HDO/H₂O=3-6×10⁻⁴

60

100

HDO spectrum

HDO : Toupie assymétrique

Astron. Astrophys. 314, 281–294 (1996)

Warm HDO/H₂O~3×10⁻⁴

Water in galactic Hot Cores

P.D. Gensheimer¹, R. Mauersberger^{1,2,3}, and T.L. Wilson¹

Astron. Astrophys. 313, 657-663 (1996)

2-6×10⁻⁴

The excitation and abundance of HDO toward W3(OH)/(H₂O)

F.P. Helmich^{1,2}, E.F. van Dishoeck^{1,3}, and D.J. Jansen¹

Include 464 GHz line

ASTRONOMY

AND

ASTROPHYSICS

A&A 447, 1011–1025 (2006) DOI: 10.1051/0004-6361:20053937 © ESO 2006

Astronomy Astrophysics

High-mass

YSOs

~10⁻³

Water in the envelopes and disks around young high-mass stars

F. F. S. van der Tak¹, C. M. Walmsley², F. Herpin³, and C. Ceccarelli⁴

HDO/H₂O ice limits

A&A 399, 1009–1020 (2003) DOI: 10.1051/0004-6361:20021558 © ESO 2003

Astronomy Astrophysics

Solid HDO/H₂O<0.002-0.01

Revisiting the solid HDO/H₂O abundances*

E. Dartois¹, W.-F. Thi^{2,3}, T. R. Geballe⁴, D. Deboffle¹, L. d'Hendecourt¹, and E. van Dishoeck³

A&A 410, 897–904 (2003) DOI: 10.1051/0004-6361:20031277 © ESO 2003

Solid HDO/H₂O<0.005-0.02

Search for solid HDO in low-mass protostars

B. Parise¹, T. Simon², E. Caux¹, E. Dartois³, C. Ceccarelli⁴, J. Rayner², and A. G. G. M. Tielens⁵

Detection HD¹⁸O in Orion

Use HD¹⁸O to better constrain HDO in Orion

\Rightarrow HDO/H₂O = 0.01

Consistent with Persson et al. 2007, but higher than previous estimates

Bergin et al. 2010

See updated ratio in presentation Darek Lis

Puzzling HDO/H₂O ratios

- High-mass hot cores: 0.01 vs. <0.001?</p>
- Low mass protostars:
 - IRAS 16293 -2422: 0.03 (warm), 0.005 (cold)
 - Coutens et al. 2012
 - Need for photodesorption layer
 - NGC 1333 IRAS2A: >0.01 (warm), 0.01-0.1 (cold)
 - Liu et al. 2011
 - Persson et al. in prep find more than factor 50 lower value for warm HDO from interferometry data
 - NGC 1333 IRAS4B: <0.0006 (warm)</p>
 - Jørgensen et al. 2010

Problem is determining H₂O rather than HDO see also Comito et al. 2010 for SgrB2(M)

HDO HIFI program: focus on 893 GHz line

HDO 893 GHz line important for constraining cold HDO/H₂O
 Combine with ground-based HDO data for warm HDO/H₂O

HDO/H₂O example spectra HIFI

Constraining the cold and warm HDO/H₂O ratios

Some recent WISH results on H₂O

Ewine F. van Dishoeck Leiden Observatory/MPE

> RCW120 A. Zavagno

www.strw.leidenuniv.nl/WISH

H₂O lines: HIFI and PACS

Observe mix of low- and high-excitation lines to probe cold and hot environments; Include ¹²CO 10-9, ¹³CO 10-9, C¹⁸O 9-8, PACS

Importance of gas-grain chemistry

Ice

H₂O gas ring

Ice formation

Photodesorption

 H_2O gas= -

Alves et al. 2001 Bergin et al. 2002

668

 $n=2.10^4 - 5.10^6$ cm⁻³, T=10 K Layer of water gas where ice is photodesorbed

A&vD2008

Lab + Theory

Öberg et al. 2009

Detection of cold water reservoir in pre-stellar cores

ESA Sci-Tech Note

- Simple ice chemistry works
- High density required for emission

Caselli et al. 2012

Inferred water abundance L1544

-Need efficient photodesorption in center by CR induced photons -Also applies to outer envelope protostars (Schmalzl, Mottram et al. in prep.)

Hot cores: wet or dry?

NGC1333 IRAS2A

- Deep 5 hr integration on excited line reveals narrow $H_2^{18}O$ and also shows narrow $H_2^{16}O$ component

- Abundance ~few ×10⁻⁵ to 10⁻⁴, higher than thought before

High temperature chemistry: How 'wet' are hot cores?

- What causes variations from source to source? Physics?

Hot core chemistry W43MM1

Inner water abundance consistent with 10⁻⁴

Water in outflows

HH 211

H₂O and high-J CO, H₂ go together
H₂O abundance low, 10⁻⁷ – 10⁻⁵

Preliminary numbers (subject to change)

Source	Cold	Warm	Ref	PDlayer
Orion		0002-0.005	Neill et al.	
NGC 6334		0.0002	Emprechtinger eta	
W33A		~0.001	vdTak et al.	
G327.3				
NGC7129				
NGC2071				
L1157		0.001	Codella et al.	
IRAS16293	0.005	0.034	Coutens et al.	0.05
		0.0009	Persson et al.	
N1333 I2A	< 0.025	>0.01	Liu et al.	
N1333I4A				
		~0.001	Persson et al.	
N1333I4B		<0.0006, ~0.001	J,&vD, Persson et al.	

Need to reconcile differences, especially for low-mass sources

Isotope selective processes

- D/H in the gas enhancing HDO/H₂O in the grains
 - $o/p H_2$ ratio => $H_2D^+ \uparrow => D \uparrow$
 - CO freeze out => H_2D^+ \uparrow => D \uparrow
- Gas phase fractionation starting with H₂D+
 - CO freeze-out
- Isotope selective photodissociation? Unlikely
- Isotope selective photodesorption? Quantified, small effect (Arasa et al. in prep)
- High $T D + OH \rightarrow H + OD$

Grain surface processes

- Thermal exchange reactions: H/D exchange
 - H₂O + D₂O, H₂O + OD at high ice T
- $OH + H_2$ vs slower $OD + H_2$ tunneling

....

• **O** + **H**₂ does not go

Papers

- Coutens et al.: IRAS4A, 4B, few months
- Liu et al. IRAS2A, high mass: TBC
- Persson et al. I4A,4B,2A PdbI few months
- Joe, Markus: H₂O modeling: few months
- Yunhee: get 464 GHz, 225/241 GHz data ~yr
- Floris, Charlotte: W33A
- Fuente: IM sources (NGC 2071, 7129)
- vD+ synthesis paper ~2014
 - See also PPVI chapters CC+, vD+